SYNOPTIC: Boundary-Layer Computation by an N Parameter Integral Method Using Exponentials, Hartmut H. Bossel, Mechanical Engineering Department, University of California, Santa Barbara, Calif.; AIAA Journal, Vol. 8, No. 10, pp. 1841–1845.

Boundary Layers and Convective Heat Transfer

Theme

Describes an integral method (method of weighted residuals) which uses exponentials in approximating and weighting functions and an arbitrary number N of parameters. Method is used to solve plane laminar incompressible boundary-layer equations. It is applied to several standard test cases and results are compared with accepted solutions.

Content

Let X = nondimensional streamwise coordinate; Y = nondimensional coordinate normal to X; U = nondimensional velocity in X direction; U_e = velocity at the edge of the boundary layer (prescribed); $U_{\text{tab}}(Y)$ = tabulated experimental or analytical initial velocity profile; V = nondimensional velocity in Y direction; V_0 = nondimensional wall suction or blowing velocity (prescribed); $f_k(Y)$ = weighting functions, finite everywhere with $f_k(\infty)$ = 0; $a_n(X)$ = unknown parameters in the velocity approximation; and α = prescribed exponent, here α = 1.

The nondimensional laminar incompressible boundarylayer momentum equation,

$$\partial U^2/\partial X + \partial (VU)/\partial Y = U_e(dU_e/dX) + \partial^2 U/\partial Y^2$$

is multiplied by weighting functions $f_k(Y)$ and integrated to

$$\frac{d}{dx} \int_0^\infty f_k U^2 dY - \int_0^\infty f_{k'} V U dY - \int_0^\infty f_{k''} U dY - U_e \frac{dU_e}{dX} \int_0^\infty f_k dY + \left[f_k \frac{\partial U}{\partial Y} \right]_{Y=0} = 0 \quad (1)$$

$$k = 1, 2, \dots, N$$

where

$$V(X,Y) = -\int_0^Y \frac{\partial U}{\partial X} dY + V_0(X)$$

(The paper employs a minor transformation not shown here.) Choice of weighting functions,

$$f_k(Y) = e^{-kY}$$
 $k = 1, 2, ..., N$

and velocity approximation,

$$U(X,Y) = (1 - e^{-\alpha Y})[U_e(X) + \sum_{n=1}^{N} a_n(X)e^{-n\alpha Y}]$$
 (2)

permits formal integration of Eq. (1) with respect to Y. A system of N ordinary differential equations for N parameters $a_n(X)$ remains and is solved by standard numerical methods. The velocity profile follows from Eq. (2); shear stress, displacement, and momentum thicknesses follow from similar formulas.

Parameters for the initial profile are obtained from either a set of algebraic equations to which the ordinary differential equations reduce in the case of similarity, or from a more general least-squares procedure by requiring

$$\int_0^\infty f_k U(a_n; Y) dY = \int_0^\infty f_k U_{\text{tab}}(Y) \equiv q(k)$$

$$k = 1, 2, \dots, N$$

where the q(k) are obtained by numerical integration. The N equations yield N initial profile parameters a_n .

The integral method is used to compute several standard boundary-layer test cases covering the spectrum of boundary-layer flows from stagnation point to separation: 1) discontinuous external pressure gradient (stagnation point flow changing into flat plate flow); 2) discontinuous suction applied to flat plate flow; and 3) circular cylinder with suction. The results are compared with accepted published solutions. Good qualitative agreement is found for N=1 or 2, while very accurate results are obtained for N=3-5. For N=5 the absolute error in the wall shear is generally of order 10^{-4} .